skip to main content

Bioengineering Lecture

Monday, May 6, 2013
4:00pm to 5:00pm
Add to Cal
Beckman Institute Auditorium
Bioimaging at the nanoscale -- Single-molecule and super-resolution fluorescence microscopy
Xiaowei Zhuang, Professor of Chemistry and Chemical Biology; Professor of Physics, Department of Chemistry and Chemical Biology; Department of Physics, Harvard University,

 

Abstract: Dissecting the inner workings of a cell requires imaging methods with chemical specificity, single-molecule sensitivity, molecular-scale resolution, and dynamic imaging capability such that molecular interactions inside the cell can be directly visualized. Fluorescence microscopy is a powerful imaging modality for investigating cells largely owning to its molecular specificity and dynamic imaging capability. However, the spatial resolution of light microscopy, classically limited by diffraction to a few hundred nanometers, is substantially larger than typical molecular length scales in cells. Hence many subcellular structures and dynamics cannot be resolved by conventional fluorescence microscopy. We recently developed a super-resolution fluorescence microscopy method, stochastic optical reconstruction microscopy (STORM), which breaks the diffraction limit. STORM uses single-molecule imaging and photo-switchable fluorescent probes to temporally separate the spatially overlapping images of individual molecules. This approach has allowed multicolor and three-dimensional imaging of living cells with nanometer-scale resolution and enabled discoveries of novel sub-cellular structures. In this talk, I will discuss the general concept, recent technological advances and biological applications of STORM.

 

For more information, please contact Linda Scott by phone at ext. 4389 or by email at [email protected].