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For Polyurethane Foam, "More™ Means “Less”
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Polymer Foams Undergo 3 Stages: Nucleation is Least Understood

Haji-Akbari, seholar.princeton.edu
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Measure Solubility and Specific Volume to Fit PC-SAFT Material Parameters
Using Gravimetry-Axisymmetric Drop-shape Analysis (G-ADSA)
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Sapphire window allows
camera to film pendant drop

High-pressure Oil bath
vessel maintains

CO, atmosphere

, Different methods predict vastly different nucleation energy barriers AW (and
Cao, X. et al. 2005, Polymer 46, 775-783\nucleation rate « e2W/kBT) but experiments to validate them are lacking

Increasing Bubble Nucleation Important to Reduce
Thermal Conductivity of Polyurethane Insulating Foams
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“Macro”foam Polyurethane

Cells ~ 1-10

Still makes a
reasonable foam!

PC-SAFT and other
model development
performed by Dr.

Modeling of Bubble Nucleation Requires Equilibrium
and Interfacial Properties
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temperature

Magnetic Suspension Balance

(MSB) measures weight

Pendant drop is used to
measure interfacial tension
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CO, swells polyol drop,
measure swelling volume

Polyurethane foam
is not too different
from the crust of a
pizza, a Neapolitan
creation and classic
(Ciro Cascella,
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Swelling volume is used to

calculate buoyancy
correction to MSB to
estimate density,

solubility, and diffusivity
Buoyancy correction to weight from CO,
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Instrument Development for “Seeing” Bubble Nucleation
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Microfluidic
Hydrodynamic-focusing:
A “Film Reel” of Bubble

Nucleation

Initially developed to watch protein folding with x-
rays, hydrodynamic-focusing effectively creates a
“film reel” of fast (~millisecond) kinetics along the
physical length of a microfluidic channel.
Here, the inner stream of interest passes through
a tee junction from within a small capillary. The
outer stream ensheathes this capillary and, later,
the inner stream, protecting it from the effects of
the walls of the channel, essential for preventing
premature bubble nucleation.
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Predicting Effect of “C5” on
g
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Bubble Nucleation Dow, Lak:
Verify Equilibrium Properties Predicted by PC-SAFT Model with Gas Chromatography (GC)
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/Implemeqtation for High-pressure Foaming
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Bubbles grow Bubbles coalesceContinuous foam

Re << 1 due to microfluidic
90 100 dimensions ensures laminar flow at
constant velocity, ensuring the
nucleation time is proportional to
distance along the channel
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Linear pressure drop is predictably
governed by Poiseuille flow since
flow behavior is dominated by an
incompressible outer stream

Theory

1k2f + CO,, Ps;t=7.2 MPa, T=301 K
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Future quantitative experiments will
be used to validate predictions

based on string method

Conclusions: Technical

Models based on PC-SAFT and DFT predict interfacial properties essential for
bubble nucleation models in agreement with measurements

Preliminary results from microfluidic hydrodynamic-focusing suggest novel
method for measuring bubble nucleation to validate string method predictions

Experiments support accuracy of extension of model to ternary system; model
predicts substantial reduction in bubble nucleation with addition of C5

Conclusions: Personal

The Kornfield group has supported my collaboration with leading scientists
within Caltech and around the world (U. Naples, Dow, and Argonne)

Collaboration with industry (Dow) connected me with over a dozen industrial
experts to design unique instrumentation for fundamental scientific study

Theory and experiment beautifully support each other when done in parallel
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