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Abstract: Multimodal single-cell genomics data present an appealing substrate for improved physical modeling of
biological systems. We present a model for bursty, multi-stage mRNA production, introduce and characterize a power
series-based method for the computation of likelihoods, and motivate applications to statistical inference.

Next steps
This approach suggests routes to non-perturbative bursty joint RNA-
protein distribution models, which have been challenging to model5.
The availability of entire distributions enables explicit modeling and
identification of sampling processes, improving the physical
interpretability of single-cell genomics data6.

Background

Genomic data provide statistical challenges

due to stochasticity of mRNA production and

experimental sampling. To maximize their

biological interpretability, we are developing

Chemical Master Equation-based models and

solvers for the Bayesian inference of

underlying biophysical parameters. With an

eye toward extrapolation, we explore burst

models with a distinct pre-RNA population1,2.

Parameter estimation
Decomposition reproduces the likelihood and
Kolmogorov-Smirnov landscapes produced via
numerical integration, motivating parameter
estimation by searching for optimal basins4.
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Mathematical background
Given the model:

𝐵 × ∅
where 𝐵 ~ 𝐺𝑒𝑜𝑚 𝑏 , we can compute the
steady-state 𝑃(pre-mRNA, mRNA) through

the generating function 𝜙 = 𝑘 0׬
∞
𝐹 𝑈; 𝑏 𝑑𝑠.

ODE decomposition
We can decompose 𝐹 𝑈(𝑠; 𝑢, 𝑣; 𝛽, 𝛾); 𝑏 into disjoint

power series approximations F 𝑠 ∈ 𝑆𝑘 ≈ σ𝑖Ω𝑘,𝑖𝑈
𝑖

integrable through the evaluation of special functions,

then compute 𝜙 ≈ ෠𝜙 = σ𝑘σ𝑖Ω𝑘,𝑖 𝑆𝑘׬
𝑈𝑖𝑑𝑠.

The functional form of 𝑈 guarantees that 𝑅𝑒 𝑈 < 0;
therefore, we decompose based on a threshold value
of |𝑈| within the common domain of convergence.

CME model PDE

ODE solutionCME solution

Generating 
functions

𝑂(𝑛3) FSP

𝑂(𝑛 ln 𝑛) IDFT

𝑂(𝑛) integration

ODE

Characteristics

Method performance
The decomposition method provides excellent
control of runtime compared to numerical
integration. Taylor approximations improve
precision over a broad parameter domain.
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𝑈 is in the form of 𝐴𝑒−𝛽𝑠 + 𝐵𝑒−𝛾𝑠 for 𝛽 ≠ 𝛾 and 𝑒−𝛾𝑠 𝐴 + 𝐵𝑠 for 𝛽 = 𝛾.
Thus, 𝑈 represents downstream dynamics. For a given 𝑈, 𝐹 is solely a function of

the burst distribution, e.g.
𝑏𝑈

1−𝑏𝑈
.

By integrating 𝐹 𝑈; 𝑏 , we can compute the steady-state distribution3.

Special function solutions

׬ 𝑈𝑖𝑑𝑠 ∼ ቊ 2𝐹1 −𝑖, 𝜇𝑖, 𝜇𝑖 + 1, 𝑧 𝛾 ≠ 𝛽

Γ 1 + 𝑖, 𝛼𝑖 𝛾 = 𝛽

Fast, general-purpose algorithms for evaluation
with 𝛼, 𝜇, 𝑧 ∈ ℂ are scarce. We are designing
dedicated algorithms to extract and combine
high-performing regions from approximations,
while avoiding divergent regions.

𝒃-step Uniform Geometric Shifted geometric

ℝ

𝕀

 

          

 
  
 
 
 
   
  

log10 𝑘/𝛾

lo
g
1
0
𝑏

lo
g
1
0
𝑏

lo
g
1
0
𝑏


