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Figure 4. For a linear polyanion with non-electrostatic attraction to the

Vdw > VdW < o © surface, a ~2nm thick adsorption layer forms at the colloid surface.
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stability. Star polymers induce largest repulsive barrier due to thinner

1. J. Jiang, V. Ginzburg, Z.-G. Wang. Density functional theory for
MFMT Coul. MSA TPT-1 adsorption layer (less bridging between surfaces at close approach). charged fluids. Soft Matter, 14, 2018



