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A: no swimming B: no fluid advection C: the full problem

To understand the origin of non-monotonicity, we consider two separate
problems, A and B.  

A:           , classical Taylor dispersion is recovered.

B: The fluid velocity            but the vorticity is retained. No classical 
Taylor dispersion. Rotation by vorticity reduces the swim diffusivity.

Introduction

Active Brownian particles

The transport of a solute that experiences molecular diffusion and fluid 
advection in a Poiseuille flow has been extensively studied. In the long 
time limit, the cross-sectional average number density      satisfies an 
effective advection-diffusion equation,  

 The average drift is the average flow speed,              . The effective 
dispersion coefficient (        ) of the solute is enhanced compared to its 
bare molecular diffusivity. This phenomenon of shear-enhanced 
longitudinal spreading is known as Taylor dispersion [1].  
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An acitve Brownian particle (ABP) self-propels with a fixed intrinsic 
speed      and undergoes translational and rotational Brownian motion 
with diffusivities       and      . The body-fixed unit vector     denotes the 
direction  of swimming.

At long times, the swimming motion becomes a random walk due to 
Brownian reorientation [2-3]. The diffusivity associated with this 
random walk is called the swim diffusivity. 
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ABPs in Poiseuille flow

It has been shown that microswimmers in Poiseuille flow exhibit 
interesting behavior including upstream swimming and non-
monotonic dispersion as a function of the flow speed [4-6].

Why do microswimmers swim upstream? 
What is the mechanism of non-monotonic dispersion? 
Can we explain these phenomena with the simple ABP model?
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ABPs accumulate at confining boundaries because they self-propel and 
cannot penerate the wall [7].

higher number density 
at the wall

flow off

flow on

Accumulation at the wall + rotation by the fluid vorticity
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Theoretical framework

The evolution of the single-particle 
probability density function              
satisfies the Smoluchowski equation. 
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Non-monotonic dispersion?
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The average drift and effective longitudinal dispersion as a 
function of the flow speed  for different levels of confinement.

Conclusion

Using the generalized Taylor dispersion theory [8], we derived 
an effective advection-diffusion equation for the cross-sectional 
average of the particle number density. We have shown that 
rotation by vorticity provides a robust mechanism for upstream 
swimming regardless of the type of microswimmer. The 
combination of flow and activity leads to a non-monotonic 
variation of the effective longitudinal dispersion as a function of 
the flow speed.
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A transition from net 
upstream motion to 
downstream motion is 
observed as a function 
of the flow speed.

ABPs lose their 
persistence (passive-
like) due to rapid 
spinning from vorticity:
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