Upstream swimming and Taylor dispersion of active Brownian particles
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Introduction

The transport of a solute that experiences molecular diffusion and fluid
advection in a Poiseullle flow has been extensively studied. In the long

time limit, the cross-sectional average number density = satisfies an
effective advection-diffusion equation,
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Number density (or concentration ) of a Brownian tracer/solute

The average drift is the average flow speed, U = w. The effective

dispersion coefficient ( D! ) of the solute is enhanced compared to its

bare molecular diffusivity. This phenomenon of shear-enhanced
longitudinal spreading is known as Taylor dispersion [1].

Active Brownian particles

An acitve Brownian particle (ABP) self-propels with a fixed intrinsic

speed U, and undergoes translational and rotational Brownian motion
with diffusivities Dt and Dgr. The body-fixed unit vector q denotes the

direction of swimming.
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At long times, the swimming motion becomes a random walk due to
Brownian reorientation [2-3]. The diffusivity associated with this
random walk is called the swim diffusivity.

ABPs in Poiseuille flow

It has been shown that microswimmers in Poiseuille flow exhibit
interesting behavior including upstream swimming and non-
monotonic dispersion as a function of the flow speed [4-6].

Why do microswimmers swim upstream?
What is the mechanism of hon-monotonic dispersion?
Can we explain these phenomena with the simple ABP model?
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ABPs accumulate at confining boundaries because they self-propel and

cannot penerate the wall [7].
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Theoretical framework

The evolution of the single-particle

1 . i OP : :
probability density function P(x, q, t) 7tV JF+Vge-jt=0
satisfies the Smoluchowski equation.
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Non-monotonic dispersion?

To understand the origin of non-monotonicity, we consider two separate

problems, A and B.

A: Uy = 0, classical Taylor dispersion is recovered.
(D" — Dr) /Dy ~ Pé

B: The fluid velocity u = 0 but the vorticity is retained. No classical
Taylor dispersion. Rotation by vorticity reduces the swim diffusivity.
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Results

he average drift and effective longitudinal dispersion as a
function of the flow speed for different levels of confinement.
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Conclusion

Using the generalized Taylor dispersion theory [8], we derived
an effective advection-diffusion equation for the cross-sectional
average of the particle number density. We have shown that
rotation by vorticity provides a robust mechanism for upstream
swimming regardless of the type of microswimmer. The
combination of flow and activity leads to a non-monotonic
variation of the effective longitudinal dispersion as a function of
the flow speed.
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