Understanding and mitigating mechanical degradation in Li-S batteries via nanomechanical experiments and additive manufacturing Max A. Saccone¹, Julia R. Greer²

¹Division of Chemistry and Chemical Engineering, California Institute of Technology ²Division of Engineering and Applied Science, California Institute of Technology

Mechanical degradation in Li-S batteries

Discharging reaction: $S_8 + 16 Li^+ + 16 e^- \rightarrow 8 Li_2S$

- Lithium-sulfur (Li-S) batteries have high theoretical energy density/capacity (2600 Wh kg⁻¹,1672 mAh/g) and use low cost, earth abundant materials
- 80% volume expansion during discharge causes mechanical degradation and capacity fade
- When and how does Li₂S yield, deform, and fail?
- Need **expansion-tolerant architectures** to mitigate

In-situ SEM Li₂S particle compression methodology

- Air-free transfer device allows Li₂S powder to be brought into SEM chamber for compression and imaging
- Probe displacements are prescribed with nm precision and resultant loads are measured
- Hertzian model of elastic contact between sphere and half-space¹ used to fit elastic portion of loading data
- Young's modulus E_1 and Poisson's ratio v_1 are known properties of indenter, v_{Li_2S} is predicted²

Hertzian elastic contact model

mechanical degradation

Nanomechanical experiments

Summary

- We perform in-situ SEM compression testing of air-sensitive μ m-sized Li₂S particles
- Li₂S yields and cracks at **contact pressures of** ~500 MPa, much higher than reported nominal stresses in composite Li-S cathode materials³
- Important to consider spatially resolved **stresses** and high stress configurations

Additive manufacturing of Li₂S cathodes

- We introduce emulsion stereolithography and demonstrate fabrication of Li₂S-C composites with **50 µm feature sizes** (3x better resolution)
- Li₂S-C composites are tested as **free-standing** cathodes for Li-S batteries
- Promising route towards fabrication of expansiontolerant cathode architectures

Yielding and mechanical deformation of Li₂S particles

- Hertzian elastic contact model matches experimental data until a **yielding event initiates plasticity**
- Ultimate failure is caused by crack initiation and propagation
- E_{Li_2S} is the free parameter in Hertzian elastic contact model, least squares fit gives $E_{Li_2S} = 7 \text{ GPa}$

250

Projected contact area A

Additively manufactured Li₂S cathodes

Emulsion resins enable fabrication of composites via digital light processing (DLP) stereolithography

Structural and chemical

characterization

- EDS and XRD confirm crystalline Li₂S in structure
- nm-scale porosity from aqueous emulsion domains

Highest resolution 3D architected Li-S cathode

Acknowledgements

Fellowship support from the **Resnick Sustainability Institute at Caltech** is gratefully acknowledged. Thanks to Professor Kimberly See (Caltech) for

