

Background

Long-chain polymers have long been known to be useful in a variety of applications¹

Drag Reduction

- Flow through a pipe experiences reduced friction (i.e. in Trans Alaska Pipeline)²
- Mist Control
 - Droplets formed are larger and fall faster, leading to less explosive mist
- Increased Elongational Viscosity
 - Desired feature in hydraulic fluids

Chain Scission: Long-Chain polymers break in flow³

- \geq Long-chain polymers under stress degrade due to chain scission (covalent bonds break)
- \geq Pumping through pipelines, in fuel systems, etc. breaks chains, which decreases their effectiveness

Megasupramolecules: Benefits of long-chain polymers without permanent degradation¹

 \geq End-associative long telechelic polymers act like long-chain polymers in flow, but reversibly break apart

Association

Dissociation

Adjust length of backbone and strength of associative groups to tune behavior

Taming Turbulence

Drag Reduction has been known since the 1940s, but mechanism is not well understood⁴

Friction factor as a function of Re at maximum drag reduction (Adapted from Virk, *et al.* 1970)⁵

Using Megasupramolecules as molecularly designed probes of turbulence

 \geq Stable, reproducible

Particle Image Velocimetry

- Collaboration with McKeon group (GALCIT)
- Observe the impact of megasupramolecules on turbulent flow

Snapshot of particle image velocimetry data for water

Megasupramolecules

Red Lhota¹, Hojin Kim¹, R.W. Learsch¹, Jacqueline Tawney², Ryan McMullin², David Huynh², Ming-Hsin (Jeremy) Wei¹, Beverley McKeon², Julie Kornfield¹ ¹Kornfield Group (California Institute of Technology), ²McKeon Group (California Institute of Technology)

- Tunable association strength
- > Tunable **backbone length**

Active turbulence (Wang, et al. 2014)⁶

sprayed in a mist

- to larger droplet mists¹
 - feed fires
 - extinguish other fires

still allow engine combustion

- \geq Quantifying drop sizes and break-up control agents

