Development of single-cell SPRITE to comprehensively map dynamic

organization of DNA in higher-order nuclear structures within single cells
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Abstract

An important factor in the control of gene regulation is the 3-dimensional organization of the nucleus, which is
dynamically assembled and regulated in different cellular states. Yet, how this nuclear organization is established
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are present when we compare as few as 10 single cells from scSPRITE against original SPRITE. We have also
shown that we can obtain high coverage per cell by observing nearly uniform coverage of the genome,
demonstrating the robustness of scSPRITE in maintaining intact single cells throughout the procedure. High
single cell accuracy was measured from mouse-human cell mixing experiments, with 97% of cells representing a
single species. Furthermore, we have initially explored the heterogeneity of single cells by identifying cells in
each stage of the cell cycle as previously described (Nagano et al. (2017) Nature). This tool will allow us to
better understand the heterogeneity of nuclear structure at the single-cell level.
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We defined a contact score metric that allows us to identify genomic structures in our single-
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