Caltech

Motivation

Ultrafast terahertz spectroscopy provides a non-damaging probe of fundamental charge dynamics in novel photovoltaic materials. New insights drive development of powerful, globally accessible energy technology.

New Photovoltaic Materials

Hybrid perovskites^{1,2}

belong to perovskite family:

ABX₃

 A^+ . B^{2+} = cations X^{-} = anion

Hybrid perovskites mix organic and inorganic components.

Advantages

- Competitive efficiency with commercial technology
- Cheap and easy synthesis

Highly tunable through composition and structure

Obstacles

- Unstable in excess heat, air, water, light, etc.
- Scale-up process difficult
- Incomplete picture of fundamental photophysics

Terahertz (THz) Frequency

Low energy

Towards DC electricity

Radio, Mici	rowave	THz 0.1 – 3 mm	range 10 THz – 30 μm	•	IR, Visibl	e <i>,</i> UV

6.2 THz ~ 298 K (room temperature)

Advantages

- Non-damaging (non-ionizing)
- Sensitive to many-particle interactions (e.g. room temperature vibrations)
- Full electric field is measurable

Obstacles

- sensitive detectors
- Expensive setup
- Steep learning curve

perovskite film Qiu et al. 2018, Materials Energy Today.

High energy Towards

X-rays

Lack of strong emitters and

Our laser system generates light pulses shorter than 1-trillionth of a second.

LASER BEAM

Challenge:

Result:

Outlook:

Additional References

photovoltaic applications. Nature Reviews Materials, 2, 17042. ACS Energy Letters, 2, 1535-1548.

